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An acute respiratory syndrome (COVID-19), caused by a novel coronavirus (SARS-CoV-2) with a high rate
of morbidity and elevate mortality, has emerged as one of the most important threats to humankind in
the last centuries. Rigorous determination of SARS-CoV-2 infectivity is very difficult owing to the
continuous evolution of the virus, with its single nucleotide polymorphism (SNP) variants and many
lineages. However, it is urgently necessary to study the virus in depth, to understand the mechanism of

its pathogenicity and virulence, and to develop effective therapeutic strategies. The present contribution
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summarizes in a succinct way the current knowledge on the evolutionary and structural features of the
virus, with the aim of clarifying its mutational pattern and its possible role in the ongoing pandemic.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The respiratory syndrome responsible for the current pandemic
initially detected in Wuhan in late December 2019 (Na Z et al,,
2020) is an infectious disease caused by a novel coronavirus (SARS-
CoV-2). Coronaviruses (CoVs) are a group of enveloped viruses,
with a positive single-stranded RNA genome of approximately
30,000 bases with 5’-cap structure and 3’-poly-A tail, belonging to
the Coronaviridae family of the order Nidovirales [1]. They cause
mainly respiratory and gastrointestinal tract infections and are
genetically classified into four major genera: Alphacoronavirus,
Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. The
Alpha and Beta-CoVs can infect humans, while the Gama and Delta-
CoVs infect predominantly birds [2].

The SARS-CoV-2, which is responsible for the current Corona-
virus disease (COVID-19), also belongs to the genus Beta-CoV and it
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is considered the third major coronavirus outbreak in the last 20
years, after Severe Acute Respiratory Syndrome (SARS) and Middle
East Respiratory Syndrome (MERS) [2]. On March 11th, 2020, the
World Health Organization (WHO) having established the spread
(and severity) of the SARS-CoV-2 infection, declared that the
COVID-19 outbreak recorded in the preceding months was a
pandemic [3]. It has currently affected >200 countries. As on
October 2020, about 35.6 million people have been infected, with
more than 1.04 million deaths [4]. More than 24.8 million people
have recovered completely, but a large number of the infected
people end up in critical condition that require respiratory assis-
tance. The Countries that have been affected most severely are the
USA, Brazil, India, Russia, Mexico, South American Countries, most
European Countries [4].

Adaptive mutations in the SARS-CoV-2 genome could alter its
pathogenic potential, and at the same time would increase the
difficulty of drug and vaccine development. This contribution will
not deal in detail with the mass of molecular information now
available for SARS-CoV-2. It will rapidly summarize the information
on its evolutionary and structural features that could be useful for
the development of vaccines.
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1. SARS-CoV-2 genome composition, proximal origin and
evolution patterns

Genomes of Coronaviruses include a variable number of open
reading frames (ORF). The first 5' ORF (ORF1a/b) corresponds to
about 2/3 of genome, and it is translated in the rough endoplasmic
reticulum of the host cell into ppla and pplab protein that are
cleaved by proteases it yields 16 non-structural proteins (nsp1-16)
[5]. The 3’ ORF, which corresponds to the remaining third of the
genome consists of genes encoding accessory and structural pro-
teins [5]. The four major structural proteins are: the surface Spike
(S) protein, which recognizes the receptor of the host cell (the
angiotensin converting enzyme 2 (ACE2)), binds to it, and mediates
the penetration of the virus into the host cell the envelope E pro-
tein, the matrix protein (M), and the nucleocapsid (N) protein that
binds the RNA and is fundamental for virion assembly [1,5] (Fig. 1).
Additionally, the SARS-CoV-2 contains 6 accessory proteins, enco-
ded by the ORF3a, ORF6, ORF7a, and ORF8, ORF10 genes: their
functions are still largely unexplored. Thus, most of the proteins
encoded by ORFla and ORFlab are essential for virus replication
and at least for the adaption of the virus to a new host. In addition, a
5’ untranslated region (UTR) and a 3’-UTR have also been identified
in the SARS-CoV-2 genome [1,5]. Some of the nsp form the repli-
case/transcriptase complex: nsp 12 is the RNA-dependent RNA
polymerase that replicates the RNA of the virus, however, to func-
tion perfectly it also needs nsp 7 and nsp 8 and, possibly, of other
non-structural proteins. The genomic organization of the SARS-
CoV-2 shares about 89% sequence identity with that of other
CoVs. Comparative sequence analysis of the SARS-CoV-2 genome
indicates striking similarities to that of the Bat-CoV, suggesting a
possible bat origin for that in the affected humans in Wuhan [6].
The possibility of other animal intermediate hosts from bats before
the introduction of the virus into humans has been discussed.
Initially, the Pangolin origin of COVID-19 in humans had received
significant favour, particularly based on the finding that the virus of
pangolins could use ACE2 as the receptor in the host cells. However,
more recent results of various experimental approaches, e.g., on the
very poor affinity of the pangolin virus for the human ACE2 re-
ceptor have apparently exempted pangolins from a possible role as
intermediate host. The question of the intermediate host in the
transmission of SARS-CoV-2 from bats to human is thus not settled,
and it appears possible that the transmission occurs directly [7]
(Fig. 2).

Generally, the rates of nucleotide substitution of RNA viruses are
fast, and this rapid evolution is mainly shaped by natural selection.
This high error rate and the consequent rapidly evolving virus
populations [8], which could lead to the accumulation of amino
acid mutations, might affect the transmissibility of the virus, its cell
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tropism and pathogenicity. It would unfortunately also present
daunting challenges for the design of effective vaccines and diag-
nostic means. Fortunately, however, until now the observed di-
versity among SARS-CoV-2 sequences has been low. There has been
an exception that has had dire consequences, i.e., the replacement
of aspartic acid 614 of the Spike protein with a glycine, which has
greatly increased the infectivity of the virus, but, in principle, the
possibility of positive natural selection mutations exists. Consid-
ering its high transmissibility and the absence of pre-existing im-
munity in the general population its natural disappearance appears
to be unlikely. Furthermore, it is not known whether SARS-CoV-2 is
already fully adapted for efficient growth in human cells after its
host-jump from bats or from a putative intermediate host [9].
Genomic epidemiology has revealed that the spillover from bats to
humans has most likely occurred in late November or early
December 2019. and that from that moment the spread of the virus
occurred mainly by a human-to-human transmission [6].

2. Recent genomic changes in SARS-CoV-2

Coronaviruses such as SARS-CoV-2 are relatively stable thanks
to a proofreading mechanism that operates during replication.
Many genomic studies have nevertheless revealed changes in their
genomes, including mutations and deletions. The D614G point-
mutation in the Spike protein of SARS-CoV-2, which rapidly
became the most widespread variant of SARS-CoV-2, has just been
mentioned: we were among the first to observe it [10—12], but we
had also observed that this mutation clustered with a series of
other point mutations, including one in the polymerase gene [10]. A
series of other mutations were then identified, allowing the clas-
sification of several SARS-CoV-2 lineages [13]. At the same time,
additional profound changes in the genome, i.e. deletions, started
to be reported. In particular, an extensive deletion in the ORF7a
gene [14] and a deletion in the nsp2 gene [15]. More recently,
analysing a more comprehensive dataset of more than 17.000 se-
quences obtained from GISAID we identified the emergence of a
strain with a deletion of 9 nucleotides in the nsp1 gene (nucleotides
686—694 corresponding to amino acids 241—-243) in patients
infected with COVID-19 from different areas of the world. The
overall frequency of the genome deletion was 0.44%, but was not
distributed homogeneously: for instance, we did not find it in Italy,
Germany, and Austria, whereas it was more frequent in Sweden,
Israel, and the USA. Structural analysis suggest that this deletion
might affect the C-terminal region of the protein that appear to be
important for the regulation of viral replication and appear to have
negative effect on host’s gene expression [16]. Those results were
also confirmed by other groups that highlighted that SARS-CoV-2
appear to be undergoing profound genomic changes [17,18].
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Fig. 1. Genome architecture of SARS-CoV-2.
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Fig. 2. Maximum likelihood phylogeny was estimated with n = 143 complete genomes sequences from the current (2019—2020) SARS-CoV-2 epidemic plus n = 3 closely related
bat strains plus n = 2 pangolin strains retrieved from GISAID. Number along branch represent bootstrap score. Scale bar represents expected substitutions per nucleotide site.

While the D614G mutation confers a selective advantage for
SARS-CoV-2 fitness [11,12], the exact biological relevance of the
other mutations is still unknown. However, nsp 1, which is also
known as the leader protein, is central in the inhibition of the anti-
viral innate immune response, in particular the expression of
interferon-alpha [19] and is possibly the most important determi-
nant of the viral pathogenicity. We feel it is appropriate to mention
that a viral isolate from an asymptomatic SARS-CoV-2-positive
subject had an unprecedented replication ability in VeroE6 cells
in the absence of any clear cytopathic effect [9]. Even though it was
a single observation, and even if the precise molecular mechanism
that explains the absence of cytopathic effect has not yet been
identified, we believe that the observation is significant. Such re-
sults could indicate the evolution of a possible new viral quasi-
specie, but further data will be necessary in order to confirm this
hypothesis. On this respect we believe that priority in this moment
will be the monitoring over time of asymptomatic and pauci-
symptomatic subjects to confirm the spreading of this particular
viral strain with a possible decreased viral pathogenicity.

3. Parameters on viral mutations and spreading and their
effect

Environmental factors, e.g., temperature, population density
and air pollution, seem to affect viral spreading and mortality rate
[20—24]. In addition, interventions aimed at limiting people
movement and interactions have been implemented in several
areas of the globe to curb the pandemic. The overall effect of these
measures has been a reduction of the number of infections and the
decrease of death rates. However, while it is intuitively clear that,
for instance, full lockdowns by themselves are very effective, they
are economically so burdensome to become impractical and un-
sustainable in the long run. Consequently, it becomes important to
implement a series of concomitant and complementary measures
to limit viral spread. One important point to be considered concerns
the virus itself: at the moment there are no reasons to believe that
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changes of the virus have occurred in the direction of decreased
pathogenicity. The decrease in the seriousness of the infection
which is now generally observed is prima facie related to the
containment measures: they certainly influence one parameter
that is important, i.e. de magnitude of the viral load which is
transmitted, thus in a sense they alter, quantitatively if not quali-
tatively the virus. Whether the measures above also have an effect
on the viability of the viral particles has been suggested as a pos-
sibility [25,26]. But, as we have discussed above, the chances that
the virus itself may change (i.e., mutate) in the direction of
decreased pathogenicity could still be considered.

4. Conclusions

The COVID-19 pandemic has stressed our health care systems in
an unprecedented way and underlined once more the important
role of the molecular evolution succinctly described in this review.
Within a few days from the first reported cases of anomalous
pneumonia, significant progress was made in the fight against it:
the virus was isolated, sequenced, identified and genetically char-
acterized. It was named SARS-CoV-2 because of its phylogenetic
relationship with SARS-CoV and bat SARS-like coronaviruses. Based
on its genetic features, molecular and serological assays were
developed and have been introduced in routine diagnostics. Phar-
macological means have been gradually discovered and introduced,
and general vaccine strategies have been developed or are in
development. Trials are ongoing or are about to start to determine
their effectiveness. This contribution has pictured the current
research on the molecular evolution of the SARS-CoV-2 after its
epidemic outbreak. Phylogenetic analysis and homology modeling
have added knowledge to the fine details of the virus, and so have
done the studies exploring the genome of the virus and the
structure of its proteins. The search for viral variants with
decreased or no pathogenic potential would be a significant step.
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